Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Daniel E. Lynch ${ }^{\text {a }}$ * and Ian McClenaghan ${ }^{\text {b }}$

${ }^{\mathrm{a}}$ School of Science and the Environment, Coventry University, Coventry CV1 5FB, England, and ${ }^{\mathbf{b}}$ Key Organics Ltd, Highfield Industrial Estate, Camelford, Cornwall PL32 9QZ, England

Correspondence e-mail:
apx106@coventry.ac.uk

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.165$
Data-to-parameter ratio $=37.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-tert-Butyl-4,6-dinitrophenol

The structure of the title compound, $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$, has been determined and is found to have an intramolecular hydrogen bond between the phenol group and one of the 6-nitro O atoms. The molecule packs in a zigzag hydrogen-bonded chain, consisting of an intermolecular hydrogen bond, parallel to the c axis, between the phenol group and a 4-nitro O atom. The dihedral angle between adjacent molecules in the chain is 82 (3) ${ }^{\circ}$.

Comment

The title compound, (I), was first prepared in 1938 (Ipatieff et al., 1938) by the nitration of 2,4-di-tert-butylphenol, with cleavage of the 4-tert-butyl group. It was later found that (I) could also be prepared by the nitration of 2,6 -di-tert-butylphenol, with cleavage of the 6-tert-butyl group (Hart \& Cassis, 1951). Attempts by Hart and Cassis at nitration without cleavage yielded small quantities of $3,3^{\prime}, 5,5^{\prime}$-tetra-tert-butyl- p diphenoquinone. The Cambridge Structural Database (Version of April 2004; Allen, 2002) reveals only one structure of a molecule similar to (I), that being musk ambrette, 4-tert-butyl-3-methoxy-2,6-dinitrotoluene (De Ridder et al., 1990). In a series of studies to prepare organic salts of 2,6-disubstituted phenols, such as the title compound and 2,6-di-tert-butyl-4-nitrophenol, with simple organic bases, we characterized the structure of the title compound and report it here.

(I)

Compound (I) exists with an intramolecular hydrogen bond between the phenol group and one of the 6-nitro O atoms (Fig. 1) and packs in a zigzag hydrogen-bonded chain, parallel to the c axis, consisting of an intermolecular hydrogen bond between the phenol group and a 4-nitro O atom (Fig. 2). Hydrogen-bonding associations are listed in Table 1 and the dihedral angle between adjacent molecules in the chain is 82 (3) ${ }^{\circ}$.

Experimental

The title compound, (I), was obtained from Key Organics Ltd. Crystals of (I) were grown from a methanol solution.

Received 10 June 2004
Accepted 29 June 2004 Online 9 July 2004

Figure 1
The molecular structure (ORTEP-3; Farrugia, 1997) and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intramolecular hydrogen bond.

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{5}$
$M_{r}=240.22$
Monoclinic, $P 2_{1} / c$
$a=9.974(2) \AA$
$b=10.575(2) \AA$
$c=11.547(2) \AA$
$\beta=112.90(3)^{\circ}$
$V=1122.0(4) \AA^{3}$
$Z=4$
$D_{x}=1.422 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 52
\quad reflections
$\theta=4.3-18.1^{\circ}$
$\mu=0.12 \mathrm{~mm}^{-1}$
$T=120(2) \mathrm{K}$
Needle, yellow
$0.20 \times 0.06 \times 0.06 \mathrm{~mm}$

Data collection

Bruker-Nonius KappaCCD area-
4502 reflections with $I>2 \sigma(I)$
detector diffractometer φ and ω scans
Absorption correction: none
5908 measured reflections
5912 independent reflections

Refinement

Refinement on F^{2}
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.165$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1108 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$S=1.04$
5912 reflections
160 parameters
H -atom parameters constrained

Figure 2
Packing diagram for (I). [Symmetry code: (i) $x, \frac{1}{2}-y, z-\frac{1}{2}$.] Dashed lines indicate intermolecular hydrogen bonds.
$1.5 U_{\text {eq }}$ of the carrier atom for the methyl groups and $1.2 U_{\text {eq }}$ of the carrier for aromatic CH and hydroxyl OH groups. Crystals of (I) were twinned with two nearly equal components related by a 180° rotation about the [100] reciprocal lattice direction. Combined data with complete or no overlap were used for refinement, and the twinning prevented merging of equivalent reflections before refinement. The partially overlapped reflections were rejected, resulting in a low datacompleteness value of 89.9%.

Data collection: DENZO (Otwinowski \& Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: $D E N Z O$ and $S C A L E P A C K$ (Otwinowski \& Minor, 1997), and $C O L L E C T$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON94 (Spek, 1994); software used to prepare material for publication: SHELXL97.

The authors thank the EPSRC National Crystallography Service (Southampton, England).

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
De Ridder, D. J. A., Goubitz, K. \& Schenk, H. (1990). Acta Cryst. C46, 468470.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Hart, H. \& Cassis, F. A. Jr (1951). J. Org. Chem. 73, 3179-3182.
Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Ipatieff, V. N., Pines, H. \& Friedman, B. S. (1938). J. Am. Chem. Soc. 60, 24952497.

Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1994). PLUTON94. University of Utrecht, The Netherlands.

